Deep convective cloud system size and structure: thermodynamic
forcing and modification by aerosols

Eric Wilcox, Desert Research Institute, Reno NV eric.wilcox@dri.edu, 775-673-7686
Derek Posselt, Univ. of Michigan, Ann Arbor, Ml
Tianle Yuan, NASA GSFC, Greenbelt MD

SR @




Why care about aerosols and cloud scales?

* Much recent work has documented the microphysical modification of deep convective clouds:
- Smaller drops
- Modification of vertical distribution of mixed phase cloud
- Changes in convective heating profile
- Invigoration

* Aerosols hypothesized to increase anvil cloud coverage:
- Significant potential radiative impact

* What influences the size convective cloud systems?



Scale-dependent cloud properties
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TRMM observations from the Indian Ocean winter monsoon ITCZ.



Scale-dependent cloud properties
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INSAT observations from the Indian Ocean winter monsoon ITCZ.



Cloud detection
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* Detect and spread algorithm (Boer and Ramanathan 1997) — Detect core of deep convection and spread out to
attach anvil cloud based on MODIS IR brightness temperatures (Roca and Ramanathan 2000).

* Evaluate scales of clouds
* Evaluate scale dependence of IR and MW brightness temperature distributions within cloud boundaries.

* Evaluate effects of thermodynamic environment on scales and scale-dependent properties.



Relationship between cloud size and CAPE/shear
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Relationship between cloud size and CAPE/shear
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Which raises at least two interesting questions:
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Why are the CAPE and shear values so different?
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* CAPE and shear strongly influence evolution and structure of convective clouds, as shown by the cloud models.
* We use MERRA at 2/3 x 1/2 deg. resolution for each cloud to develop empirical description of this relationship.

* CAPE calculated according to Emanuel (1994).



Why aren’t the size distributions more different?
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* Cloud cover dominated by clouds in the 10* to 10°> km? size range.

* Summer continental systems and winter oceanic systems are more efficient at creating cloud cover for a given
level of instability and shear compared to summer oceanic systems.



Sensitivity of cloud structure to aerosols and environment
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* Cold cloud fraction is fraction of cloud area colder than 220 K.

* Sensitivity of cold cloud fraction to shear is stronger than sensitivity to AOD in spite of clear signal of

microphysical differences in polluted cloud.
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Simulated brightness temperatures with GCE model
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Goddard Cumulus Ensemble model simulations as passed through the Goddard Satellite Data Simulation Unit.



Summary

* Properties of convective clouds depend systematically on the size of the cloud.

* This provides a convenient means of assessing the relationships between cloud structure, the
thermodynamic properties of the environment, and the cloud scales.

* Cloud size increases systematically with CAPE and shear of the environment around the core of the cloud —
with significant variability and strong regional differences.

* The variability acts to mitigate large regional differences in CAPE and shear; i.e. cloud systems of
comparable scale are achieved for lower values of CAPE and shear across the cloud size spectrum in
regions with lower mean values of CAPE and shear.

* While IR/MW brightness temperatures indicate the microphysical modification of clouds, the cold cloud
fraction is far more sensitive to changes in shear than variations in AOD.

* A large database of clouds co-located with MERRA provides a means of controlling for the environmental
variability in aerosol-cloud studies.

* Such a study is analogous to controlled experiments with a cloud model where CCN and CAPE/shear are
varied systematically.



